If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+x-63=0
a = 20; b = 1; c = -63;
Δ = b2-4ac
Δ = 12-4·20·(-63)
Δ = 5041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5041}=71$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-71}{2*20}=\frac{-72}{40} =-1+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+71}{2*20}=\frac{70}{40} =1+3/4 $
| 2x-8x+53=2x+29 | | -x+23=25 | | x/3–10=-6 | | x3–10=-6 | | 3x-36=-3(x-8) | | 5x+x-4=5x+3 | | 3.x+1=16 | | 3x-36=3(x+8) | | -x2+8x-7=0 | | -3x+5+6(-x+1)=-4(x+6) | | 3(2x+3)+2(3x+2)=9x+4 | | 2x+80/x=5 | | -10x-5=4-x | | 2.x+8=20 | | 2(x+3)-5(2x+1)=12x-19 | | 0.25x0.25+2x0.25x0.75+0.75x0.75=1 | | 18x-(3x-4)=79 | | 8x−10=4x+2(2x−5) | | 0.60x+0.40(100−x)=50 | | (7/10n)+3/5=(2/5n)+2 | | 7x+4+2(x-5)=8(x+1) | | 7÷10n+3÷5=2÷5n+2 | | 2(x-5)=(x-8)+4 | | 6x-(2x+22)=6 | | -7(t+1)-t-12=-8(t+5)+21 | | 2,5x-4,7=(1,5+2) | | 3x+5-2=7x+15 | | 3a-4=23-a | | 6x-5=8x-15 | | 0.12(y-6)+0.10y=0.02y-0.01(70) | | 5-2u/3=-9 | | 18x+3=7x-3 |